Genetic Epidemiology

Open questions to genetic epidemiologists
Inke König
Universität zu Lübeck, Germany

Given the rapid pace with which genomics and other ‐ omics disciplines are evolving, it is sometimes necessary to shift down a gear to consider more general scientific questions. In this line, we can formulate a number of questions for genetic epidemiologists to ponder on. These cover the areas of reproducibility, statistical significance, chance findings, precision medicine and overlaps with related fields such as bioinformatics and data science. Importantly, similar questions are being raised in other biostatistical fields. Answering these requires to think outside the box and to learn from other, related, disciplines. From that, possible hints at responses are presented to foster the further discussion of these topics.


Pgainsim: A method to assess the mode of inheritance for quantitative trait loci in genome-wide association studies
Nora Scherer1, Peggy Sekula1, Peter Pfaffelhuber2, Anna Köttgen1, Pascal Schlosser1
1Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center – University of Freiburg, Germany; 2Faculty of Mathematics and Physics, University of Freiburg, Germany

Background: When performing genome-wide association studies (GWAS) conventionally an additive genetic model is used to explore whether a SNP is associated with a quantitative trait regardless of the actual mode of inheritance (MOI). Recessive and dominant genetic models are able to improve statistical power to identify non-additive variants. Moreover, the actual MOI is of interest for experimental follow-up projects. Here, we extend the concept of the p-gain statistic [1] to decide whether one of the three models provides significantly more information than the others.

Methods: We define the p-gain statistic of a genetic model by the comparison of the association p-value of the model with the smaller of the two p-values of the other models. Considering the p-gain as a random variable depending on a trait and a SNP in Hardy-Weinberg equilibrium under the null hypothesis of no genetic association we show that the distribution of the p-gain statistic depends only on the allele frequency (AF).

To determine critical values where the opposing modes can be rejected, we developed the R-package pgainsim (https://github.com/genepi-freiburg/pgainsim). First, the p-gain is simulated under the null hypothesis of no genetic association for a user-specified study size and AF. Then the critical values are derived as the observed quantiles of the empirical density of the p-gain. For applications with extensive multiple testing, the R-package provides an extension of the empirical critical values by a log-linear interpolation of the quantiles.

Results: We tested our method in the German Chronic Kidney Disease study with urinary concentrations of 1,462 metabolites with the goal to identify non-additive metabolite QTLs. For each metabolite we conducted a GWAS under the three models and identified 119 independent mQTLs for which pval_rec or pval_dom<4.6e-11 and pval_add>min(pval_rec,pval_dom). For 38 of these, the additive modelling was rejected based on the p-gain statistics after a Bonferroni adjustment for 1 Mio*549*2 tests. These included the LCT locus with a known dominant MOI, as well as several novel associations. A simulation study for additive and recessive associations with varying effect sizes evaluating false positive and false negative rates of the approach is ongoing.

Conclusion: This new extension of the p-gain statistic allows for differentiating MOIs for QTLs considering their AF and the study sample size, even in a setting with extensive multiple testing.

[1] Petersen, A. et al. (2012) On the hypothesis-free testing of metabolite ratios in genome-wide and metabolome-wide association studies. BMC Bioinformatics 13, 120.


Genome-wide conditional independence testing with machine learning
Marvin N. Wright1, David S. Watson2,3
1Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany; 2Oxford Internet Institute, University of Oxford, Oxford, UK; 3Queen Mary University of London, London, UK

In genetic epidemiology, we are facing extremely high dimensional data and complex patterns such as gene-gene or gene-environment interactions. For this reason, it is promising to use machine learning instead of classical statistical methods to analyze such data. However, most methods for statistical inference with machine learning test against a marginal null hypothesis and by that cannot handle correlated predictor variables.

Building on the knockoff framework of Candès et al. (2018), we propose the conditional predictive impact (CPI), a provably consistent and unbiased estimator of a variables‘ association with a given outcome, conditional on a reduced set of predictor variables. The method works in conjunction with any supervised learning algorithm and loss function. Simulations confirm that our inference procedures successfully control type I error and achieve nominal coverage probability with greater power than alternative variable importance measures and other nonparametric tests of conditional independence. We apply our method to a gene expression dataset on breast cancer. Further, we propose a modification which avoids the computation of the high-dimensional knockoff matrix and is computationally feasible on data from genome-wide association studies.

References:

Candès, E., Fan, Y., Janson, L. and Lv, J. (2018). Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. J Royal Stat Soc Ser B Methodol 80:551–577


The key distinction between Association and Causality exemplified by individual ancestry proportions and gallbladder cancer risk in Chileans
Justo Lorenzo Bermejo, Linda Zollner
Statistical Genetics Research Group, Institute of Medical Biometry and Informatics, University of Heidelberg, Germany

Background: The translation of findings from observational studies into improved health policies requires further investigation of the type of relationship between the exposure of interest and particular disease outcomes. Observed associations can be due not only to underlying causal effects, but also to selection bias, reverse causation and confounding.

As an example, we consider the association between the proportion of Native American ancestry and the risk of gallbladder cancer (GBC) in genetically admixed Chileans. Worldwide, Chile shows the highest incidence of GBC, and the risk of this disease has been associated with the individual proportion of Native American – Mapuche ancestry. However, Chileans with large proportions of Mapuche ancestry live in the south of the country, have poorer access to the health system and could be exposed to distinct risk factors. We conducted a Mendelian Randomization (MR) study to investigate the causal relationship “Mapuche ancestry → GBC risk”.

Methods: To infer the potential causal effect of specific risk factors on health-related outcomes, MR takes advantage of the random inheritance of genetic variants and utilizes instrumental variables (IVs):

1. associated with the exposure of interest

2. independent of possible confounders of the association between the exposure and the outcome

3. independent of the outcome given the exposure and the confounders

Given the selected IVs meet the above assumptions, various MR approaches can be used to test causality, for example the inverse variance weighted (IVW) method.

In our example, we took advantage of ancestry informative markers (AIMs) with distinct allele frequencies in Mapuche and other components of the Chilean genome, namely European, African and Aymara-Quechua ancestry. After checking that the AIMs fulfilled the required assumptions, we utilized them as IVs for the individual proportion of Mapuche ancestry in two-sample MR (sample 1: 1,800 Chileans from the whole country, sample 2: 250 Chilean case-control pairs).

Results: We found strong evidence for a causal effect of Mapuche ancestry on GBC risk: IVW OR per 1% increase in the Mapuche proportion 1.02, 95%CI (1.01-1.03), Pval = 0.0001. To validate this finding, we performed several sensitivity analyses including radial MR and different combinations of genetic principal components to rule out population stratification unrelated to Mapuche ancestry.

Conclusion: Causal inference is key to unravel disease aetiology. In the present example, we demonstrate that Mapuche ancestry is causally linked to GBC risk. This result can now be used to refine GBC prevention programs in Chile.