An Introduction to Causal Inference and Target Trials

Login details (Zoom Session ID and password) will be sent to registered participants by email until March 10th.
If you are registered and did not receive this email until March 10th, please contact us at

Tutorium “An Introduction to Causal Inference and Target Trials” (full-day), Sonja Swanson

– Basic concepts and assumptions of causal inference, using counterfactual or potential outcomes
– Key sources of bias: e.g., confounding, selection, and information bias
– Describing a target trial: describing the key protocol elements of an ideal randomized trial, including the eligibility criteria, treatment strategies, treatment assignment, follow-up period, outcome, causal contrast, and statistical analysis
– Emulating a target trial: designing and analyzing observational data to estimate causal effects, including the use of g-methods

Cain LE, Saag MS, Petersen M, May MT, Ingle SM, Logan R, et al. Using observational data to emulate a randomized trial of dynamic treatment-switching strategies: an application to antiretroviral therapy. Int J Epidemiol. 2016; 45(6):2038–49.

García-Albéniz X, Hsu J, Hernán MA. The value of explicitly emulating a target trial when using real world evidence: an application to colorectal cancer screening. Eur J Epidemiol. 2017. doi:10.1007/s10654-017-0287-2.

Hernán MA, Robins JM. Using big data to emulate a target trial when a randomized trial is not available. Am J Epidemiol. 2016; 183(8):758–64.

Labrecque, J.A., Swanson, S.A. Target trial emulation: teaching epidemiology and beyond. Eur J Epidemiol. 2017; 32, 473–475.

Short CV
Sonja Swanson is an Assistant Professor in the Department of Epidemiology at Erasmus MC and holds an adjunct affiliation with the Department of Epidemiology at the Harvard T. H. Chan School of Public Health. She was recently invited to join the editorial team of Epidemiology. Her methodological research focuses on improving the use and transparency of methods for estimating causal effects in epidemiology. This work spans applications in observational studies and pragmatic randomized trials. She has made important contributions to instrumental variables methods, e.g. in the context of Mendelian randomization, as well as target trials, effect heterogeneity or causal mediation. Her substantive research primarily focuses on neuropsychiatric disorders and related health outcomes, including using appropriate methods to studying potential prevention and treatment strategies.